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�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Control Scheme for Autonomous
Mobile Robot

�• have identified the components covered in the course 
outline in the larger context of the control scheme for 
autonomous mobile robotsautonomous mobile robots
�– provide perspective on where the components fit

�• motion control addresses the robot�’s low level locomotive 
ability
�– robot is implementing decisions on the path to navigate 

and the sensor settings and modes to implement 
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�– motion capabilities of the robot are quantitatively 
evaluated through the mobile robot kinematics 

�– the robot then goes and interacts with the environment
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Control Scheme for Autonomous
Mobile Robot

�• the robot perception of its environment is through its 
sensors and its interpretation of the sensed measurements

includes strategies for extracting high level information�– includes strategies for extracting high level information 
like features from range-based sensing data

�– armed with locomotion mechanisms and hardware and 
software for perception the mobile robot moves and 
perceives the world

�• for the sensor information to be relevant the robot takes on 
th l t k f l li ti
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the more complex task of localization
�• how a robot navigates, interprets data, localizes and 

controls its motion is addressed through the even more 
complex tasks of deliberation under cognition and path-
planning

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Control Scheme for Autonomous
Mobile Robot �– the plan 

�– Thomas will cover generalized Bayesian filters for 
localization next week
Mae sets up the background for him today by�– Mae sets up the background for him, today, by 
discussing motion and sensor models as well as robot 
control

�– Mae then follows on Bayesian filters to do a specific 
example, underwater SLAM
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Probabilistic Robotics

�• with the advent of probabilistic robotics the robotics world is 
divided into classical robotics and probabilistic robotics 

�• the strength of probabilistic robotics is its ability to account�• the strength of probabilistic robotics is its ability to account 
for uncertainty in sensing, modelling, and control

�• the trade-off is increase computational complexity and  the 
requirement to model by approximation

�• end result:  more robust to real-world considerations and 
uncertainty
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�• uncertainty captured through probability distribution 
functions
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�• LEGO Mindstorms

Probabilistic Estimation Methods

�• have two steps: prediction and update
�– estimate the system state in the form of a probability 

distribution function PDF (which Thomas covered)distribution function, PDF (which Thomas covered) 
�– prediction propagates the PDF according to the robot 

commands together with a motion model for the robot
�– update step corrects the prediction by merging the 

predicted PDF with sensor information
�– new estimate given by updated PDF & process iterated
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�– In each iteration the prediction step accounts for info lost 
due to error in the motion model while the update step 
incorporates information gained from sensors
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Definitions

�• state �– all aspects of the robot or environment that can 
impact the future

�• pose location and orientation or attitude for a robot�• pose �– location and orientation or attitude for a robot 
relative to a global coordinate system; pose without attitude 
is referred to as location

�• dead-reckoning �– estimating the current position of a body 
in 3 space by applying knowledge of a previous position on 
the basis of assumed distance and direction travelled 

th i t d d di ti f t l diff f t l
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�– the intended direction of travel may differ from actual 
direction due to winds or currents

�– prior to GPS that is what aircraft and ship used
�– problem is position error grows unbounded with time
�– in absence of absolute references this is the fall-back

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Motion or Motion-Planning

�• objective: enable the robot to automatically compute its 
motions from high-level descriptions of tasks and 
models acquired through sensingmodels acquired through sensing

�• more relevant now than ever
�• robots were initially developed for industrial manufacturing 

and were stationary
�– now, they are engaged tasks that are less repetitive and 

environments that are less structured for e.g. medical 
d li ti h d
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surgery, ocean and space applications, search and 
rescue, etc. 
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Prediction Stage Needs
Robot Motion Model

�• motion of autonomous robots is inherently uncertain, non-
deterministic, or stochastic due to the robot, environment, 
and the interaction between the twoand the interaction between the two

�• uncertainty stems from incomplete knowledge of all three
�• the Kalman filter (example of more general class of  

probabilistic estimation techniques) provides a recursive 
method of estimating the state of a dynamic system in the 
presence of noise
i th t t f l li ti th K l filt t t i
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�• in the context of localization, the Kalman filter output is a 
distribution of likely robot positions instead of a single 
deterministic position estimate

�• how to capture or model the motion uncertainty so it can be 
used as an input to the Kalman Filter?

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Kalman Filter requirements

�• motion model
�• sensor model

�• environment model
�• map
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Prediction Stage
Robot Motion Model

�• the probabilistic motion model is the state transition 
probability expressed as a conditional probability density 
function: p(x | x 1 u)function: p(xt | xt-1, u)
�– this is posterior probability that a command, input, action, 

or control, u, transitions robot from pose or state xt-1 to xt

�– the task is to model p(xt | xt-1, u)  based on the equations 
of motion (the physics or kinematics) of the robot

�– calculate the robot�’s new pose or state based on velocity 
d ti l d (d d k i )
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and time elapsed (dead-reckoning)
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Robot Motion Model

�• a rigid body�’s configuration can be described by six 
variables

3 translational and 3 rotational (yaw pitch and roll)�– 3 translational and 3 rotational (yaw, pitch, and roll) 
degrees-of-freedom

�– the example of a wheeled robot (LEGO Mindstorm) on a 
flat surface would be described by a two-dimensional 
state space spanned by (x,y, )
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Robot Motion Model

�• the more general example of a 6 degree-of-freedom 
autonomous underwater vehicle would have a six-
dimensional state space spanned by: (x y z )dimensional state space spanned by: (x,y,z, , , )
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Robot Motion Models

�• two classes of motion models
1.odometry �– when wheel encoders are used (e.g. LEGO 

Mindstorm and Roomba robots)Mindstorm and Roomba robots)
�• if used for positioning, assume no wheel slippage

2.velocity or dead-reckoning as in AUVs 
�• odometers are more accurate than velocity measurements 

since they are a displacement and a velocity is an 
integration of a displacement, however:
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�– odometry is not available until after executing a motion 
command �– not usable for motioning planning

�– practice is to use odometry models for estimation and 
velocity models for motion planning
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Algorithms for PDF 
to Model Uncertainty

�• for a normal distribution

1. Algorithm prob normal distribution (a,b):

�• for a triangular distribution

g p _ _ ( , )

2. return 
b2 = variance
centered at 0
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1. Algorithm prob_triangular_distribution (a,b):

2. return
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�• Motion
�• Perception
�• Control
�• Concluding Remarks
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Error Distributions for PDF
to Model Uncertainty

Normal distribution Triangular distribution
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1. Velocity Motion Model
Nomenclature 

�• robot pose in global coordinate system

y
x

pose

y
x

y

location

p
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1. Velocity Motion Model
Equations for 2D Model

t

Tyxtx
afterstaterobot

free-noise is )',','(

Center of circle:

with

tafter staterobot 
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1. Velocity Motion Model
Algorithm

T

Tyxtx

yxtx

)(

)  (     

)  ( 1

t

Tyxtx

i

Tvtu

after  staterobot 
free-noise is )',','(

parameterserror            
motion specificrobot      

)(   

controls for error free robot
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controls for error-free robot
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1. Velocity Motion Model
Sampling Algorithm 

�• more general Bayesian filters (which Thomas will address 
next class) sample from the motion model at discrete time 
steps as opposed to calculating the posterior probabilitysteps as opposed to calculating the posterior probability

�• density: given xt compute p(xt | xt-1, u)
�• sampling: given ut and xt-1 generate a random xt as 

described in motion model p(xt | xt-1, u)
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velocity motion model  (sampled) for different noise parameter settings
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1. Velocity Motion Model
Sampling Algorithm for Filters

�• generate random samples from p(xt | xt-1, u) for given ut and 
xt-1 to obtain random pose xt
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2. Odometry Motion Model
Model Equations

�• robot transitions from pose            to               after t
�• thus ut is modelled by an initial rotation ( rot1), translation 

( ) and another rotation ( )

) ,y ,(
___

x )' ,'y ,'(
___

x

( trans), and another rotation ( rot2)

22 )'()'( yyxxtrans

)','(atan21 xxyyrot

12 ' rotrot 2rot
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2. Odometry Motion Model 
Noise Model

�• measured motion= true motion + noise

||||11 211

�ˆ
transrotrotrot

�ˆ
|||| 2143

�ˆ
rotrottranstranstrans
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transrotrotrot
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2. Odometry Motion Model 
Algorithm (given x, x�’, u)

22 )'()'( yyxxtrans

1. Algorithm motion_model_odometry (x,x�’,u)

2.

)','(atan21 xxyyrot

12 ' rotrot

22 )'()'(�ˆ yyxxtrans

)','(atan2�ˆ
1 xxyyrot

12
�ˆ'�ˆ
rotrot

)�ˆ|�ˆ|�ˆ(b

3.

4.

5.

6.

7.

8

odometry values (u)

values of interest (x,x�’)
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)||,(prob trans21rot11rot1rot1p
|))�ˆ||�ˆ(|�ˆ,�ˆ(prob rot2rot14trans3transtrans2p

)�ˆ|�ˆ|,�ˆ(prob trans22rot12rot2rot3p

8.

9.

10.

11. return p1 · p2 · p3
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2. Odometry Motion Model
Sampling Algorithm for Filters

1. Algorithm sample_motion_model (u, x):

1 )||l (�ˆ
,,,,, 21 yxxu transrotrot

1.

2.

3.

4.

5.

)||sample( 21111 transrotrotrot

|))||(|sample(�ˆ
2143 rotrottranstranstrans

)||sample(�ˆ
22122 transrotrotrot

)�ˆcos(�ˆ' 1rottransxx
)�ˆsin(�ˆ' 1rottransyy sample normal distribution
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6.

7. Return 

21
�ˆ�ˆ' rotrot

',',' yx

p _ _
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2. Odometry Motion Model
Effect of Noise

�• motion model with varying noise parameters (unsampled)
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Motion and Maps

�• the environment, as represented through a map, has not 
figured in the picture so far

�• for some problems a map m details where the robot may�• for some problems a map, m, details where the robot may 
or may not navigate

�• occupancy maps distinguish free (traversable) from 
occupied terrain
�– robot can only occupy free space

�• map-based motion model: ),,|( 1 mxuxp ttt
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�– calculates likelihood a robot placed in a world of map m
arrives at pose xt upon executing ut at pose xt-1

�• yields better results than a map-free motion model 
�– however, difficult to get a closed tractable form

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Motion and Maps

�• approximation for map-based motion model that is good 
when xt-1 �– xt is small (i.e. < half robot dimension):

)|()|( mxpxuxp

�• is for normalization
)(

)|().|(
),,|( 1

1
t

tttt
ttt xp

mxpxuxp
mxuxp
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early Mars Rover (JPL)
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Posterior Probability with Map

1: Algorithm motion_model_with_map (xt, ut, xt-1,m)
2: Return p(x |u x ) · p(x |m)2: Return p(xt|ut,xt-1) · p(xt|m) 

1: Algorithm sample_motion_model_with_map (ut,xt-1,m):
2: do
3: xt = sample_motion_model(ut,xt-1)
3: = p(xt|m)
4: until > 0
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4:               until  0
5: Return (xt, )

occupiedalready  cell ain  be drobot woul iff 0 mapoccupancy an in 

 with  pose of y'consistenc'  theis  )|(

|m)p(x

mxmxp

t

tt

�• Introduction 
�• Motion
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Motion Model Summary

�• motion models:  odometry-based and velocity-based 
systems

�• ways to calculate the posterior probability p(x| x�’ u) and how�• ways to calculate the posterior probability p(x| x , u) and how 
to sample from p(x| x�’, u) to provide input to Bayes filters

�• model calculations are done in fixed time intervals t

�• robot-specific parameters of the models have to be learned
�• extended motion model that takes the map into account. 
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Perception

�• process by which the robot uses its on-board sensors to 
obtain information about the state of the environment, e.g. 
an AUV uses its side scan sonar to gather imagesan AUV uses its side scan sonar to gather images 
regarding objects on the sea floor

�• in the process it obtains a measurement, observation or 
percept which adds to its belief on the environment state 

�• these measurements have a latency associated with them 
and hence report on a past (albeit, recent) environment 
state
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state 
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Robot Sensors
Quantities Measured
�• contact:

�– bumper
�• internal:

�– accelerometers (spring-mounted masses)
�– gyroscopes (spinning mass, laser light)
�– compasses, inclinometers (earth magnetic field, gravity)

�• proximity or range finding:
�– sonar (time of flight)
�– radar (phase and frequency)
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�– laser range-finders (triangulation, time-of-flight, phase)
�– infrared (intensity)

�• visual: 
�– cameras

�• satellite-based :  GPS
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Robot Sensors
E.g. Wheel Encoders

�• require +5V and GND to 
power them, and provide a 0 p , p
to 5V output

�• provide +5V output when 
they "see" white, and a 0 V 
output when they "see" black.

�• disks are manufactured out of 
high quality laminated color 
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plastic to offer a very crisp 
black to white transition
�– enables a wheel encoder 

sensor to easily see the 
transitions
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�• LEGO Mindstorms

Robot Sensors
Interaction with Environment

�• wide variety of sensors used in mobile robots
�– proprioceptive:  measure values internal to the robot, for 

e g speed through water distance from the bottome.g. speed through water, distance from the bottom, 
battery voltage, attitude

�– exteroceptive:  measure information about the robot�’s 
environment, for e.g. distance measurements, sound 
amplitude, conductivity, temperature, and density

�– passive sensors measure ambient environmental energy 
t i th
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entering the sensor
�– active sensors emit energy into the environment then 

measure the environment reaction
�• example of proximity sensor will be developed for 

probabilistic robotics
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Proximity Sensors

�• proximity (or range finding) sensors are widely used on 
autonomous robots

measure the proximity (range distance displacement)�– measure the proximity (range, distance, displacement) 
from a robot to an object

�– can be achieved through emitting a beam from a laser or 
a cone from an ultrasonic sensor

�• measurement can be caused by �…
�– a known obstacle
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�– cross-talk
�– an unexpected obstacle (people, furniture, �…)
�– void of real obstacles (total reflection, glass, �…)

sonar

�• Introduction 
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�• Control
�• Concluding Remarks
�• LEGO Mindstorms

Proximity Sensors
Uncertainty

�• noise is due to uncertainty �…
�– in measuring distance to known obstacle
�– in position of known obstacles
�– in position of additional obstacles
�– whether obstacle is missed

�• modeling sensors probabilistically captures reality
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Probabilistic Sensor Models

�• deterministic sensor models do not capture the 
uncertainty inherent in sensor measurement, noise, 

th i i t ti ith th i tor their interaction with the environment
�• probabilistic model captures the uncertainties that 

affect a sensor measurement through modelling 
the noise

�• probabilistically, the measurement process is 
d ll d diti l b bilit )|(
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modelled as a conditional probability, ),|( mxzp tt
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Probabilistic Proximity 
Sensors

�• determine                   , i.e., the probability of a 
t i th t th b t i t iti

),|( mxzp tt
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measurement zt given that the robot is at position xt

within map, m
�• a quick word about maps in the probabilistic sensor 

world
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Probabilistic  Sensors
- Mapping

�• environment or world in which a measurement is made is 
described through a map, m

details objects and their location within the environment�– details objects and their location within the environment

�• a robot may occupy different locations in this environment
�• map indexing:

�– feature-based maps:

objects ofnumber   total                                         
 property,object an      :}, .... ,,{ 21

N
mmmmm nN
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�• n is a feature index and mn contains property feature 
as well as feature location

�– location based maps (e.g. occupancy grid map):
�• n corresponds to a specific location 
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Probabilistic Proximity 
Sensor Models

�• where does the probability density functions like 
p(zt |xt,,m)  come from?

�• proximity probabilistic sensor models include:
1. beam
2. scan
3 feature flat
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3. feature
ripples

complex

underwater environment sensing
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1. Beam Sensor Model

�• usable for sonar or laser based sensors
�• range may be measured along a beam

�• scan z consists of k measurements

�• individual measurements are independent given the robot

},...,,{ 21 Kzzzz
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individual measurements are independent given the robot 
position K

k
tkttt mxzPmxzP

1
, ),|(),|(
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1. Beam Model Sensor Errors
Proximity Measurements

1. beams reflected by  
b lobstacles

2. beams reflected by 
persons / caused 
by crosstalk

3. random 
measurements

Faculties of Engineering & Computer Science      
44

Autonomous Robotics
CSCI 6905 / Mech 6905 �– Section 3

Dalhousie Fall 2011 / 2012 Academic Term

4. maximum range 
measurements
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1. Beam Sensor Model
PDFs to Model Uncertainty

b

zz

hit e
b

mxzP
2

exp )(

2
1

2
1

),|(

zz
mxzP

ze
),|( exp

unexpected obstacles

zexp zmax0

measurement noise

zexp zmax0

otherwise
mxzP

0
),|(unexp

1

random measurement
max range
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zexp zmax0

max

1
),|(

z
mxzPrand

zexp zmax0

smallz
mxzP

1
),|(max
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1. Beam Sensor Model PDF 
Incorporating Uncertainty

�• probability density function that accounts for the four error 
sources discussed

�• determine parameters based on analyzing or learning from�• determine parameters based on analyzing or learning from 
data (offline or on-the-fly)
�– an area where machine learning has made some good 

contributions!

),|(hithit mxzPT
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1. Beam Sensor Model PDF 
Adjusting Intrinsic Parameters
�• measured distances for expected 300 cm and maximum 

range of 500 cm 
�• ultrasound has more measurement and detection noise�• ultrasound has more measurement and detection noise
�• laser more accurate but reports false ranges

su
re

d
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sonar sensor laser range sensor
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e 
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1. Beam Sensor Model
Limitations

�• discontinuous or suffers from lack of smoothness in 
a cluttered environment (like a rock strewn surface)
�– belief representations may not capture the 

correct states as adjacent states may be very 
different

�– optimizations will find many local extrema 
making it difficult to establish the global 

t
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extremum
�• computationally intense



25

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

1. Beam Sensor Model 
Summary

�• assumes independence between beams.
�– models physical causes for measurements
�– mixture of densities for these causes�– mixture of densities for these causes
�– assumes independence between causes, problem?

�• implementation
�– learn parameters based on real data
�– different models should be learned for different angles at 

which the sensor beam hits the obstacle
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which the sensor beam hits the obstacle
�– determine expected distances by ray-tracing
�– expected distances can be pre-processed
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2. Scan Sensor Model
Likelihood Field - Pros

�• better sensor model
�• ad hoc but probabilities are smoother in cluttered spaces 

and computations more efficient (pre-comps in 2D) �– usedand computations more efficient (pre comps in 2D) used 
in lasers
�– not as sensitive to robot pose

�• project sensor scan end point into the global coordinate 
space of the map based on geometrical and trigonometric 
constraints

�• captures following noise sources and uncertainty:
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�– measurement noise
�– failures 
�– unexplained random measurements
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2. Scan Sensor Model
Likelihood Field - Cons

�• likelihood model disadvantages
�– does not model obstacles and dynamics that yield short 

readingsreadings
�– sensors can see through wall (no ray casting)
�– map uncertainties not accounted for

�• can remedy by refining map occupancy stages (e.g. 
occupied, free, and unknown)
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2. Scan Sensor Model
Likelihood Field
3 obstacles and robot at bottom taking 
a measurement (dotted line)

low likelihood in dark areas

likelihood field
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P(z|x,m)

map m of environment likelihood field
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2. Scan Sensor Model
Scan matching

�• extract likelihood field from scan and use to match 
different scan

lik lih d fi ldlikelihood fieldproximity scan
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robot
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2. Scan Sensor Model
Summary

�• efficient, uses 2D tables only
�• smooth with respect to small changes in robot pose
�• allows gradient descent, scan matching
�• completely ignores physics of the beams
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3. Feature-Based
Measurement Models

�• beam and scan sensor models  process raw sensor 
measurements (sonar, laser, vision)

�• alternatively one could extract features from the�• alternatively, one could extract features from the 
measurements
�– reduces computational complexity since small number of 

features are extracted from high-dimensional sensor 
measurements

�– e.g. pick out lines, corners, local minima which map to 
ti t l h lf id t
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corners, continental shelf, ridges, etc.
�– landmarks are features selected to aid robot navigation 

(e.g. distinctive rocks, ridges, etc.) 

�• Introduction 
�• Motion
�• Perception
�• Control
�• Concluding Remarks
�• LEGO Mindstorms

3. Feature-Based Measurement
Probabilistic Sensor Model

1. Algorithm landmark_detection_model (z,x,m):
,,,,, yxxdiz

2.

3.

4.

22 ))(())((�ˆ yimximd yx

),�ˆprob(),�ˆprob(det dddp

))(,)(atan2(�ˆ ximyima xy
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5. Return ),|(uniformfpdetdet mxzPzpz
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3. Feature-Based
Sensor Model

�• sensor models that use landmarks measure the 
range and bearing from robot to landmark in robot 
l l flocal frame 

�• feature extractor generates a signature or value 
that characterizes the feature

�• sensors have the ability to calculate landmark 
range and bearing relative to the robot�’s local 

di t f
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coordinate frame
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4. Correlation-Based
Measurement Models

�• correlation between a measurement and the map e.g. 
map matching

mosaic together consecutive scans into local maps�– mosaic together consecutive scans into local maps
�– compare local map, mlocal,  to the global map, m,  and 

calculates local 
�– local map transformed into coordinate frame of the 

global map
�– the more similar m and mlocal, the larger

),|( mxmp tlocal

),|( mxmp tlocal

Faculties of Engineering & Computer Science      
58

Autonomous Robotics
CSCI 6905 / Mech 6905 �– Section 3

Dalhousie Fall 2011 / 2012 Academic Term

�– once both maps are in the same reference frame, 
they are compared using the map correlation function 
(not shown)    
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Sensor Model Summary

�• explicitly modeling uncertainty in sensing key to robustness

�• in many cases good models can be found by the following�• in many cases, good models can be found by the following 
approach:
1.determine parametric model of noise free measurement.
2.analyze sources of noise
3.add adequate noise to parameters (eventually mix in 

densities for noise)
4 learn (and verify) parameters by fitting model to data
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4. learn (and verify) parameters by fitting model to data
5. likelihood of measurement is given by �“probabilistically 

comparing�” the actual with the expected measurement

�• this holds for motion models as well
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Motion Control

�• the robot acts on its environment to effect in itself or the 
environment some change

�• control carries information about the change of state in thecontrol carries information about the change of state in the 
environment or robot

�• objective of a kinematic controller is to follow a trajectory 
described by its position and/or velocity profiles as function 
of time

ti t l i t t i ht f d b bil b t
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�• motion control is not straight forward because mobile robots 
are typically non-holonomic and MIMO systems.

�• most controllers (including the one presented here) are not 
considering the dynamics of the system
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Open-Loop Control

�• trajectory (path) divided in motion segments of 
clearly defined shape: 
�– straight lines and segments of a circle 

Dubins car and Reeds Shepp car�– Dubins car, and Reeds-Shepp car 
�• control problem: 

�– pre-compute a smooth trajectory based on line, 
circle (and clothoid) segments 

�• disadvantages: 
�– It is not at all an easy task to pre-compute a 

feasible trajectory 
�– limitations and constraints of the robots
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limitations and constraints of the robots 
velocities and accelerations 

�– does not adapt or correct the trajectory if 
dynamical changes of the environment occur. 

�– resulting trajectories are usually not smooth (in 
acceleration, jerk, etc.) 
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Feedback Control

�• find control matrix, K, if it exists so: 

1312 11       kkk
K

�• with kij=k(t,e)
�• such that the control of v(t) and (t) 

232221       kkk

y)(
)( x

KeKt
tv
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�• drives the error e to zero 

�• MIMO state feedback control 

0)(lim tet
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Kinematic Position Control

�• kinematics of differential drive mobile 
robot described in the inertial frame {xl, 
yl, } is given by,

�• where x�’ and y�’ and are the linear 
velocities in the direction of the xI and yI

vKeKy

x

1            0
0      sin
0     cos

Faculties of Engineering & Computer Science      
63

Autonomous Robotics
CSCI 6905 / Mech 6905 �– Section 3

Dalhousie Fall 2011 / 2012 Academic Term

velocities in the direction of the xI and yI
of the inertial frame.

�• denote the angle between the xR axis 
of the robots reference frame and the 
vector connecting the center of the axle 
of the wheels with the final position
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Kinematic Position Control
Coordinate Transformation
�• coordinates transformation into polar 

coordinates with origin at goal 
position: 22 yxp

�• system description, in the new polar 
coordinates:

),( atan2 xy

yx

i

0        cos
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v

0         
sin

1-          sin
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Kinematic Position Control
Control Law
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Kinematic Position Control
Resulting Path
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Control Scheme for Autonomous
Mobile Robot
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LEGO Mindstorms

�• sensors and actuators
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