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* have identified the components covered in the course
outline in the larger context of the control scheme for
autonomous mobile robots

— provide perspective on where the components fit

* motion control addresses the robot’s low level locomotive

ability

— robot is implementing decisions on the path to navigate
and the sensor settings and modes to implement

— motion capabilities of the robot are quantitatively
evaluated through the mobile robot kinematics

— the robot then goes and interacts with the environment
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« the robot perception of its environment is through its

Dalhousie Fall 2011 /2012 Academic Term

sensors and its interpretation of the sensed measurements

— includes strategies for extracting high level information
like features from range-based sensing data

— armed with locomotion mechanisms and hardware and
software for perception the mobile robot moves and
perceives the world

for the sensor information to be relevant the robot takes on

the more complex task of localization

how a robot navigates, interprets data, localizes and

controls its motion is addressed through the even more

complex tasks of deliberation under cognition and path-

planning
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— Thomas will cover generalized Bayesian filters for
localization next week

— Mae sets up the background for him, today, by
discussing motion and sensor models as well as robot
control

— Mae then follows on Bayesian filters to do a specific
example, underwater SLAM
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» with the advent of probabilistic robotics the robotics world is
divided into classical robotics and probabilistic robotics

« the strength of probabilistic robotics is its ability to account
for uncertainty in sensing, modelling, and control
« the trade-off is increase computational complexity and the
requirement to model by approximation
* end result: more robust to real-world considerations and
uncertainty

 uncertainty captured through probability distribution
functions 0= T )
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* have two steps: prediction and update

— estimate the system state in the form of a probability
distribution function, PDF (which Thomas covered)

— prediction propagates the PDF according to the robot
commands together with a motion model for the robot

— update step corrects the prediction by merging the
predicted PDF with sensor information

— new estimate given by updated PDF & process iterated

— In each iteration the prediction step accounts for info lost
due to error in the motion model while the update step
incorporates information gained from sensors
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 state — all aspects of the robot or environment that can
impact the future

» pose — location and orientation or attitude for a robot
relative to a global coordinate system; pose without attitude
is referred to as location

» dead-reckoning — estimating the current position of a body
in 3 space by applying knowledge of a previous position on
the basis of assumed distance and direction travelled

— the intended direction of travel may differ from actual
direction due to winds or currents

— prior to GPS that is what aircraft and ship used
— problem is position error grows unbounded with time
— in absence of absolyte references this is the fall-back
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+ objective: enable the robot to automatically compute its
motions from high-level descriptions of tasks and
models acquired through sensing

* more relevant now than ever

* robots were initially developed for industrial manufacturing
and were stationary

— now, they are engaged tasks that are less repetitive and
environments that are less structured for e.g. medical
surgery, ocean and space applications, search and
rescue, etc.
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» motion of autonomous robots is inherently uncertain, non-

deterministic, or stochastic due to the robot, environment,
and the interaction between the two

uncertainty stems from incomplete knowledge of all three

the Kalman filter (example of more general class of
probabilistic estimation techniques) provides a recursive
method of estimating the state of a dynamic system in the
presence of noise

in the context of localization, the Kalman filter output is a
distribution of likely robot positions instead of a single
deterministic position estimate

how to capture or model the motion uncertainty so it can be
used as an input to the Kalman Filter?

Autonomous Robotics

Dalhousie Fall 2011 /2012 Academic Term Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 3 11
+ Introduction DALHOUSIE
. . gﬁflﬁnon UNIVERSITY
Kalman Filter requirements © Control e Mo

1
« Concluding Remarks @A \(; Aqu IA

* LEGO Mindstorms

motion model
sensor model

environment model
map
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» the probabilistic motion model is the state transition
probability expressed as a conditional probability density
function: p(x, | x, ;, u)

— this is posterior probability that a command, input, action,
or control, u, transitions robot from pose or state x, , to x,

— the task is to model p(x, | x, ;, u) based on the equations
of motion (the physics or kinematics) of the robot

— calculate the robot’s new pose or state based on velocity
and time elapsed (dead-reckoning)

Autonomous Robotics
Faculties of Engineering & Computer Science

Dalhousie Fall 2011 /2012 A ic T¢
alhousic Fall 2011 /2012 Academic T gy 6005 / Mech 6905 — Section 3 s
* Introduction DALHOUSIE
. : gl;:;f;ﬁon UNIVERSITY
Robot Motion Model : Cono R

« Concluding Remarks @A \(; Aqu IA

* LEGO Mindstorms

+ arigid body’s configuration can be described by six
variables
— 3 translational and 3 rotational (yaw, pitch, and roll)
degrees-of-freedom
— the example of a wheeled robot (LEGO Mindstorm) on a
flat surface would be described by a two-dimensional
state space spanned by (x,y, 6)
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» the more general example of a 6 degree-of-freedom
autonomous underwater vehicle would have a six-
dimensional state space spanned by: (x,y,z, 6.6, )
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+ two classes of motion models
1.odometry — when wheel encoders are used (e.g. LEGO
Mindstorm and Roomba robots)
« if used for positioning, assume no wheel slippage
2.velocity or dead-reckoning as in AUVs
+ odometers are more accurate than velocity measurements
since they are a displacement and a velocity is an
integration of a displacement, however:
— odometry is not available until after executing a motion
command — not usable for motioning planning

— practice is to use odometry models for estimation and
velocity models for motion planning

) . Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 3 : gineering & Fompuierseien?




+  Introduction DALHOUSIE

Algorithms for PDF ot OV

Inspiring Minds

to Model Uncertainty St GACADIA

» for a normal distribution

1. Algorithm prob_normal_distribution (a,b):

1 1a2

2. return —— exp | -5
V2m b 2b b? = variance
centered at 0

« for a triangular distribution

1. Algorithm prob_triangular_distribution (a,b):

2 return max 1 |a|
' "V6b 60b2
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Normal distribution Triangular distribution
b b -b b

| 1 0if | x [> 607
£,(X)=——=e o £:(0=9 J6o’—|x|
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* robot pose in global coordinate system

X
pose=|y
0
location = (x)
y
VA< <X.y>
r

90-0 0

XeYe> X
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xp=(x', )", H')T is noise - free
robot state after Az

Center of circle:
x* _ AN —Asiné _ LSL, +uly — ")
u* Y Acos# %L + oz’ —x)

with

1 (z—2)cosf+ (y—y')siné

=3 [y — ') cosl — (v — ') sin 6
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1: Algorithm motion_model_velocity(az, us, 2¢—1):
) 1 (x—2')cosO+ (y —y')sind x_1=(xy0)
: L==
=3 (y —y')cosl — (x — 2')sin 6 Xz :(xyH)T
x+ a2 = a))T
3: Tt = +pu(y —v "
2 Hy =) a; =robot specific motion
4 gt = y+y + (e — ) error parameters
' ) 2 xp=(x' )", 9')T is noise - free
5: r=/(x — 292+ (y —y*)? robot state after At
6: Af = atan2(y’ — y*, 2’ — 2*) — atan2(y — y*,x — %)
A6
7 v=—r"
At controls for error-free robot
g: . Al
. w — At
A 0=0 _
N g
10: return prob(v — 0, a1|v| + as|w|) - prob(w — @, as|v| + au|w|)
- prob (%, as|v| + as|w|)
. . Autonomous Robotics o .
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more general Bayesian filters (which Thomas will address
next class) sample from the motion model at discrete time
steps as opposed to calculating the posterior probability

density: given x, compute p(x, | x, ;, u)
sampling: given u, and x,; generate a random x, as
described in motion model p(x, | x, ;, u)

R N

velocity motion model (sampled) for different noise parameter settings
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+ generate random samples from p(x, | x, ;, u) for given u, and
x,, to obtain random pose x,

1: Algorithm sample_motion_model_velocity(u;. z; 1):
2: 0 = v+ sample(a [v| + as|w])

3: w = w + sample(as|v| + ay|w|)

4: 7 = sample(as|v| + aglw])

5: 2 =x— £sin0 + 2 sin(0 + wAT)

6: y' =y + Lcosh — L cos(0 + AL

7 0" =0 +wAt + YAt

8: return v, = (2, y, 0')T
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« robot transitions from pose (x.v.0) to (x'.y.#) after At

* thus u, is modelled by an initial rotation (J,,,,), translation
(0,...s)» @nd another rotation (J,,,,)

8y = (F=X)? + (77’
Oport = atan2(y'—y,x'—x) — o

Autonomous Robotics

Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 3 04

12



DALHOUSIE

. Introduction
2. Odometry Motion Model e W OO

Perception
+  Control

NOise MOde| + Concluding Remarks

+ LEGO Mindstorms

* measured motion= true motion + noise

5 =6
rotl VOII al |5}’Oll ‘+a2 |5trans‘
8 =0
= +&
trans trans a3 ‘§trans |+(Z4 ‘é‘mtl +5mt2|

5}’0[2 = 5r0t2

+&

) ‘6r()t2 |+(12 ‘é}mnx |
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Algorithm motion_model _odometry (x,x’,u)

8y = (F=)* +(7—7)*
bo)

rotl

5r0t2 = 9 '_5 - 5

rotl

A

1
2
3
4
5. 8y =)+ ()
6
7
8
9

=0-0-3

5}’01‘2 rotl
prOb( rotl rotl’al ‘ rotl ’+a2 trans)
prOb( trans trans’ a3§trans + a4 (| rotl ’ + | rot2 |))

10. prOb( rot2 r0t2’al | rot2 |+a2 trans)

I1. return p; *p, * P;
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2. Odometry Motion Model
Sampling Algorithm for Filters

1. Algorithm sample_motion_model (u, x):

u= <5rot1’5rot2’5tmns >’x = <x’ J’a 9>

1. é‘mtl = 5r'at1 + Sample(al | é‘mtl | +a2 5tr1ms)
2. trans = 5trans + Sample 5trans
3. ror2 = 5r0t2 + Sample +a2 5tmns

4. x'=x+6

trans

cos(d + 5,0,1)

A

5- y': y + étrans Sin(e + 5}’01‘1)
6. 0=60+5,,+6

rotl rot2

7.  Return <x',y’, 6?'>

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics
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+a4 (| 5mtl | + | 5r012 |))

)

sample_normal_distribution
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« motion model with varying noise parameters (unsampled)
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» the environment, as represented through a map, has not
figured in the picture so far

« for some problems a map, m, details where the robot may
or may not navigate

» occupancy maps distinguish free (traversable) from
occupied terrain

— robot can only occupy free space
« map-based motion model: P(x; |us,x;_1,m)
— calculates likelihood a robot placed in a world of map m
arrives at pose x, upon executing u, at pose x, ,
* yields better results than a map-free motion model
— however, difficult to get a closed tractable form
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« approximation for map-based motion model that is good
when x, , —x, is small (i.e. < half robot dimension):

pCx; |ugx 1) p(x; | m)

p(x; g, x,_y,m)=mn

p(x;)

» 7 is for normalization

early Mars Rover (JPL)
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1: Algorithm motion_model_with_map (x,, u,, x, ;,m)

2 Return p(x,|u,x,.;) - p(x,/m)

1 Algorithm sample_motion_model_with_map (u,x, ;,m):
2 do

3: x, = sample_motion_model(u,x, ;)

3: = p(x|m)

4 until 7> 0

5 Return (x,,7)

p(x; | m) is the'consistency' of pose x; with m
in an occupancy map p(x;m) = 0 iff robot would be in a cell already occupied

. . Autonomous Robotics
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* LEGO Mindstorms

* motion models: odometry-based and velocity-based
systems

+ ways to calculate the posterior probability p(x| x’, u) and how
to sample from p(x| x’, u) to provide input to Bayes filters

* model calculations are done in fixed time intervals A¢
* robot-specific parameters of the models have to be learned
» extended motion model that takes the map into account.

Fire-X UAV
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" CSCI 6905 / Mech 6905 — Section 3 feuttiesorEneieering & Fompuier seien”

Autonomous Robotics

16



+ Introduction DALHOUSIE

. MO UNIVERSITY

* 2rceplio: <hirine inds

Perception : Percep
«  Concluding Remarks @A C A D IA

+ LEGO Mindstorms

« process by which the robot uses its on-board sensors to
obtain information about the state of the environment, e.g.
an AUV uses its side scan sonar to gather images
regarding objects on the sea floor

* in the process it obtains a measurement, observation or
percept which adds to its belief on the environment state

+ these measurements have a latency associated with them
and hence report on a past (albeit, recent) environment
state

Single axis optical gyro 3-axis optical gyro

. . Autonomous Robotics
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« contact:
— bumper
* internal:

— accelerometers (spring-mounted masses)

— gyroscopes (spinning mass, laser light)

— compasses, inclinometers (earth magnetic field, gravity)
 proximity or range finding:

— sonar (time of flight)

— radar (phase and frequency)
laser range-finders (triangulation, time-of-flight, phase)
infrared (intensity)
* visual:

— cameras
+ satellite-based : GPS

Dalhousie Fall 2011 / 2012 Academic Term
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* require +5V and GND to
power them, and provide a 0
to 5V output ' 2 . j

« provide +5V output when ( A euuu.'gobig:ics 0
they "see" white, and a 0 v~ MSSESEEEEIREIRES sorrection-con
output when they "see" black.

» disks are manufactured out of
high quality laminated color
plastic to offer a very crisp
black to white transition

— enables a wheel encoder
sensor to easily see the

transitions
. . Autonomous Robotics o .
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Interaction with Environment : cocwnremns  g5ACADIA

LEGO Mindstorms

+ wide variety of sensors used in mobile robots

— proprioceptive: measure values internal to the robot, for
e.g. speed through water, distance from the bottom,
battery voltage, attitude

— exteroceptive: measure information about the robot’s
environment, for e.g. distance measurements, sound
amplitude, conductivity, temperature, and density

— passive sensors measure ambient environmental energy
entering the sensor

— active sensors emit energy into the environment then
measure the environment reaction

« example of proximity sensor will be developed for
probabilistic robotics
Autonomous Robotics
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» proximity (or range finding) sensors are widely used on
autonomous robots

— measure the proximity (range, distance, displacement)
from a robot to an object

— can be achieved through emitting a beam from a laser or

a cone from an ultrasonic sensor emiter 1

=)
* measurement can be caused by ... (\
— a known obstacle i
— cross-talk sonar

— an unexpected obstacle (people, furniture, ...)
— void of real obstacles (total reflection, glass, ...)
Autonomous Robotics
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* noise is due to uncertainty ...
— in measuring distance to known obstacle
— in position of known obstacles
— in position of additional obstacles
— whether obstacle is missed
* modeling sensors probabilistically captures reality

iy
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Probabilistic Sensor Models

+  Introduction DALHOUSIE

+  Motion
* Perceplion
+  Control

+  Concluding Remarks @A C A‘D‘ IA

+ LEGO Mindstorms

UNIVERSITY

Inspiring Minds

» deterministic sensor models do not capture the
uncertainty inherent in sensor measurement, noise,
or their interaction with the environment

» probabilistic model captures the uncertainties that
affect a sensor measurement through modelling

the noise

 probabilistically, the measurement process is
modelled as a conditional probability, p(z, |x,,m)

Dalhousie Fall 2011 /2012 Academic Term

Autonomous Robotics

Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 3 39

* Introduction DALHOUSIE

Probabilistic Proximity it UNIVERSITY
+  Control prres s

Sensors . Cowangrenats EIACADIA

» determine p(z |x,,m) ,i.e., the probability of a
measurement z, given that the robot is at position x,
within map, m

+ a quick word about maps in the probabilistic sensor
world

Dalhousie Fall 2011 / 2012 Academic Term

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 3 40

Faculties of Engineering & Computer Science
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agm - . Intrqduclion DALHOUSIE
Probabilistic Sensors : taion WO
- Mapping  Sororonans  EHACADIA

* environment or world in which a measurement is made is
described through a map, m

— details objects and their location within the environment

m={my,my,...,my}: m, =anobjectproperty,
N =total number of objects

» a robot may occupy different locations in this environment
* map indexing:
— feature-based maps:

* n is a feature index and m,, contains property feature
as well as feature location

— location based maps (e.g. occupancy grid map):
* n corresponds to a specific location

Autonomous Robotics

lhousi 112011 /2012 i ies of Engineeri i

Dalhousie Fall 20 012 Academic Term CSCI 6905 / Mech 6905 — Section 3 Faculties of Engineering & Computer Sme“ﬁ
[ - - - . Intrc_)duction DALHOUSIE
Probabilistic Proximity o @A
- Contral Inspiring Minds

Sensor Models + ConcangRomaris  EHA CADIA
* LEGO Mindstorms UNTVERSITY

» where does the probability density functions like
p(z, |x,,m) come from?

 proximity probabilistic sensor models include:
1. beam W

2. scan
3. feature flat
ripples
complex
underwater environment sensing
Dalhousie Fall 2011 / 2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 3 4

21



+  Introduction
" Wiowon WO

1. Beam Sensor Model L ol
L oo GACADIA

» usable for sonar or laser based sensors
* range may be measured along a beam

» scan z consists of K measurements

Z={2,,Zyyr 2y}

 individual measurements are independent given the robot

position K
P(z; | x;,m) = HP(Zt,k | x;,m)
k=1

Autonomous Robotics
Faculties of Engineering & Computer Science
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. Inlrc_)duction DALHOUSIE

1. Beam Model Sensor Errors : .. O ebring Minds
« Control h

Proximity Measurements  : guwrrerrs gACADIA

beams reflected by
obstacles

beams reflected by
persons / caused
by crosstalk

random
measurements

maximum range——

measurements

Autonomous Robotics
Faculties of Engineering & Computer Science
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*  Introduction
- Hoton WDV

1. Beam Sensor Model e

- «  Control
PDFs to Model Uncertainty : cgursterte  gJACADIA

1 (zfzm)'

unexpected obstacles

1
Bzl x,m)= nr

Ae*  z<z,
Py (1 x,m) =4
0 otherwise
measureinent noise ~__
exp Zmax

0 4 exp Zmax

random measurement

max range

1
Bz x,m) =11 S

max

P . (zlx,m)=n
Z\mall
]
0 Zexp Z max 0 Zexp Zmax
Dalhousie Fall 2011 /2012 Academic Term cscl 6@5;07%z256§3§?1§261i0n 3 Faculties of Engineering & Computer Scien:;

. Intrc_)duction DALHOUSIE
1. Beam Sensor Model PDF  : 2. S
it +  Control

Incorporating Uncertainty : Susreree gACADIA

+ probability density function that accounts for the four error
sources discussed
+ determine parameters based on analyzing or learning from
data (offline or on-the-fly)
— an area where machine learning has made some good

contributions!
T
f"/L\\ it hn (Z | X, m )
a (z]x,m)
unex unex
P(z|x,m)= P P
/ \ max max (Z | X,m )
— / \

—_— \;7 arand rand (Z | x9 m )
Dalhousie Fall 2011 / 2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
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+ Introduction DALHOUSIE
1. Beam Sensor Model PDF  : 2., ”ﬁiXiiiiiZ

Control

Adjusting Intrinsic Parameters: @  gACADIA

* measured distances for expected 300 cm and maximum
range of 500 cm

 ultrasound has more measurement and detection noise

 laser more accurate but reports false ranges

range measured

sonar sensor laser range sensor

Dalhousie Fall 2011 /2012 Academic Term cscl 6@3207%32561;?)??1;;1:‘% 3 Faculties of Engineering & Computer Scien:e

+  Introduction DALHOUSIE
« Mot
1. Beam Sensor Model i O s Minds

« Control

/!
Limitations . GorsuangRemas EHA GADTA

« discontinuous or suffers from lack of smoothness in
a cluttered environment (like a rock strewn surface)

— belief representations may not capture the
correct states as adjacent states may be very
different

— optimizations will find many local extrema
making it difficult to establish the global
extremum

« computationally intense

) ) Autonomous Robotics o ]
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
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1. Beam Sensor Model e - it

. Control Inspiring Minds
Summary | gmarerme GHACADIA
« assumes independence between beams.
— models physical causes for measurements
— mixture of densities for these causes
— assumes independence between causes, problem?

* implementation
— learn parameters based on real data

— different models should be learned for different angles at
which the sensor beam hits the obstacle

— determine expected distances by ray-tracing
— expected distances can be pre-processed

. . Autonomous Robotics
Dalhousie Fall 2011 /2012 Academic Term Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 3 49

. Inlrc_)duction DALHOUSIE

2. Scan Sensor Model it UNIVERSITY
«  Control ! ©

Likelihood Field - Pros L s ferens RFACADIA

* better sensor model

» ad hoc but probabilities are smoother in cluttered spaces
and computations more efficient (pre-comps in 2D) — used
in lasers

— not as sensitive to robot pose

+ project sensor scan end point into the global coordinate
space of the map based on geometrical and trigonometric
constraints

+ captures following noise sources and uncertainty:
— measurement noise
— failures
— unexplained random measurements

) . Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 3 s o Ehemeering & Fompuierseiens?
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+ Introduction DALHOUSIE

2. Scan Sensor Model 1 oo Yo
. g . . Contro\_ ! - )
Likelihood Field - Cons L e GACADIA

* likelihood model disadvantages

— does not model obstacles and dynamics that yield short
readings

— sensors can see through wall (no ray casting)
— map uncertainties not accounted for

» can remedy by refining map occupancy stages (e.g.
occupied, free, and unknown)

Dalhousie Fall 2011 /2012 Academic Term cscl 6?5;07%ZZS6§Z§?‘1;ZCIW}1 3 Faculties of Engineering & Computer Scienscf

. Inlrc_)duction DALHOUSIE

2. Scan Sensor Model e UNIVERSITY
H H H «  Control ! g Minds
Likelihood Field | arenme GACADIA

low likelihood in dark areas

3 obstacles and robot at bottom taking

a measurement (dotted line)
|

o

. likelihood field
map m of environment
P(z|x,m)
Dalhousie Fall 2011 / 2012 Academic Term cscr 6?;?7%?2‘3‘61;3?7!;20&0" 3 Faculties of Engineering & Computer Sciensc;
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«  Introduction DALHOUSIE

2. Scan Sensor Model i UNIVERSITY
. . Controll °
Scan matching L e GACADIA

» extract likelihood field from scan and use to match
different scan

proximity scan

likelihood field

s

L T WP
g

robot
Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics Faculties of Engineering & Computer Science
CSCI 6905 / Mech 6905 — Section 3 gineering & Fomp P
+ Introduction DALHOUSIE
" s K7
2. Scan Sensor Model gt UNIVERSITY
«  Control ) )
+ Concluding Remarks
S u m m a ry + LEGO Mindstorms @ A g A \Dl I GA

« efficient, uses 2D tables only

« smooth with respect to small changes in robot pose
+ allows gradient descent, scan matching

» completely ignores physics of the beams

Autonomous Robotics
Faculties of Engineering & Computer Science
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+  Introduction DALHOUSIE
UNIVERSITY

3. Feature-Based e

*  Motion

+  Control

Measurement Models | e rerens PACADIA

* beam and scan sensor models process raw sensor
measurements (sonar, laser, vision)

« alternatively, one could extract features from the
measurements

— reduces computational complexity since small number of
features are extracted from high-dimensional sensor

measurements

— e.g. pick out lines, corners, local minima which map to
corners, continental shelf, ridges, etc.

— landmarks are features selected to aid robot navigation
(e.g. distinctive rocks, ridges, etc.)

. . Autonomous Robotics
Dalhe Fall 2011 /2012 A Te
alhousic Fall 2011 /2012 Academic Term g 6005/ Mech 6905 — Section 3

Faculties of Engineering & Computer Science
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. Inroducton DALHOUSIE

3. Feature-Based Measurement T Ry
T - « Control s

Probabilistic Sensor Model : ConudngRemais  EHACADIA

Algorithm landmark_detection_model zx,m):
z =<i,d,a>,x =<x,y,6’>

d = \/(m (1)~ x)* +(m, (i) - y)*
a = atan2(m,, (i)~ y,m (i) —x)— 60

Diet = prob(é’ —-d,g,;)-prob(a —-a,¢,)

Retu rn Zdetpdet + prRlniform (Z | X, m)

Autonomous Robotics
Faculties of Engineering & Computer Science
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3. Feature-Based
Sensor Model

+  Introduction DALHOUSIE

*  Motion
« Perception
+  Control

+  Concluding Remarks @A C A‘D‘ IA

+ LEGO Mindstorms

UNIVERSITY

Inspiring Minds

sensor models that use landmarks measure the

range and bearing from robot to landmark in robot

local frame

that characterizes the feature

feature extractor generates a signature or value

sensors have the ability to calculate landmark

range and bearing relative to the robot’s local

coordinate frame

Dalhousie Fall 2011 /2012 Academic Term Autonomous Robotics

Faculties of Engineering & Computer Science

CSCI 6905 / Mech 6905 — Section 3 5

4. Correlation-Based
Measurement Models

* Introduction DALHOUSIE
* Motion | UNIVERSITY
» Perception
« Control

« Concluding Remarks @A \(; Aqu IA

* LEGO Mindstorms

Inspiring Minds

+ correlation between a measurement and the map e.g.

map matching

— mosaic together consecutive scans into local maps
— compare local map, m,,,,, to the global map, m, and

calculates local p(m,,, | x,,m)

— local map transformed into coordinate frame of the

global map

— the more similar m and m,,,, the larger p(m,_, |x,, m)

— once both maps are in the same reference frame,
they are compared using the map correlation function

(not shown)

Autonomous Robotics
CSCI 6905 / Mech 6905 — Section 3 58
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+  Introduction
" Viowon WO

Perception

5 Inspiring Minds
Sensor Model Summary A GACADIA

+ LEGO Mindstorms

+ explicitly modeling uncertainty in sensing key to robustness

* in many cases, good models can be found by the following
approach:

1.determine parametric model of noise free measurement.
2.analyze sources of noise

3.add adequate noise to parameters (eventually mix in
densities for noise)

4.learn (and verify) parameters by fitting model to data

5.likelihood of measurement is given by “probabilistically
comparing” the actual with the expected measurement

» this holds for motion models as well

. . Autonomous Robotics
Dalhousie Fall 2011 /2012 Academic Term Faculties of Engineering & Computer Science
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« Introduction DALHOUSIE

. 'l\i’llgrt(i:t;r;tion UNIVERSITY
Motion Control " Cortrol R

« Concluding Remarks @A \(; Aqu IA

* LEGO Mindstorms

» the robot acts on its environment to effect in itself or the
environment some change

+ control carries information about the change of state in the
environment or robot

+ objective of a kinematic controller is to follow a trajectory
described by its position and/or velocity profiles as function
of time

* motion control is not straight forward because mobile robots
are typically non-holonomic and MIMO systems.

» most controllers (including the one presented here) are not
considering the dynamics of the system

) . Autonomous Robotics
Dalhousie Fall 2011 / 2012 Academic Term Faculties of Engineering & Computer Science
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+  Introduction DALHOUSIE

. MOﬁOH_ UNIVERSITY
Perception

Open-Loop Control ! G
+ Concluding Remarks @A C A‘D‘ IA

+ LEGO Mindstorms

» trajectory (path) divided in motion segments of
clearly defined shape:
— straight lines and segments of a circle
— Dubins car, and Reeds-Shepp car
« control problem:
— pre-compute a smooth trajectory based on line,
circle (and clothoid) segments
* disadvantages:
Itis not at all an easy task to pre-compute a
feasible trajectory
— limitations and constraints of the robots
velocities and accelerations
— does not adapt or correct the trajectory if
dynamical changes of the environment occur. bt
— resulting trajectories are usually not smooth (in
acceleration, jerk, etc.)

1

Autonomous Robotics
Faculties of Engineering & Computer Science
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« Introduction DALHOUSIE

: l'\:’llgrt(i:t;r;ﬁm UNIVERSITY
Feedback Control : it Inspiring Minds

«  Ci luding Re ke

. Conuanaforans BJACADIA

find control matrix, K if it exists so:

rll kpp klﬂ .
K= R

ka1 kyp ky3
with k;=k(t.e)
such that the control of v(?) and w(t)

[Z)((ft))}K-ezK- g

(x,y,theta)

—_(v, omega)

(nonintegrable)
Robot Model

drives the error e to zero

lim;_,,, e(t)=0

 MIMO state feedback control

Autonomous Robotics
Faculties of Engineering & Computer Science
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+  Introduction
" Vioon WO

Kinematic Position Control it
| oo rerens HACADIA

» kinematics of differential drive mobile
robot described in the inertial frame {x,
v, 8} is given by,

X cos® 0
=K-e=K:|sinf 0 x[v}
Y 0 1| L®l e

0

» where x” and y’ and are the linear
velocities in the direction of the x; and y,
of the inertial frame.

+ adenote the angle between the x, axis
of the robots reference frame and the
vector connecting the center of the axle
of the wheels with the final position

4y

Dalhousie Fall 2011 /2012 Academic Term cscl 61;3;07%3256};3??1;261140” 3 Faculties of Engineering & Computer Scieng;

. . ngw . Intrc_;duction DALHOUSIE
Kinematic Position Control " Percapion UNIVERSITY

iring Minds

» Control

1
Coordinate Transformation + Cocuamgremats A CADIA

LEGO Mindstorms

» coordinates transformation into polar
coordinates with origin at goal

position: = /ar’ +ay®
o =—0+atan2 (Ay, Ax)
p=-0-a
» system description, in the new polar
coordinates:

—cosa 0
_ sin o 1 x["]
P w
B _sina 0
P

) . Autonomous Robotics
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. N g m * Introduction
Kinematic Position Control . Moton
+  Control
CO“tI’O' LaW Egg%us:ir;gdzzgasrks
It can be shown, that with
Vv = ki)p w = /\'00(4‘14'[5[5

the feedback controlled system

—k,pcosol

= [k sino— k0 — kP

—kysinol
will drive the robot to (p,a,)=(0,0,0)

The control signal v has always constant sign,

DALHOUSIE
UNIVERSITY

Inspiring Minds

BACADIA

= the direction of movement is kept positive or negative during movement
= parking maneuver is performed always in the most natural way and without

ever inverting its motion.

Autonomous Robotics
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Kinematic Position Control ;. Moton WOV
R It' P th . e Inspiring Minds

+ Concluding R k
esulting Fa L e GACADIA
= The goal is in the center and the initial position on the circle.
Robot trajectory Ropaililsajoctory

50f /{—: ! ! s50F !

40f / 40-

e .

301 30- T

201 g 20- ! a

10 10!

® (

0 - jf — = B ot

-10] O

24 \ . -20r

3 -30-

N -+
41 -0
50 -50¢ /j
-60 40 -20 )(amm] 20 40 -60 —40 -20 xqmm] 20 40 80
k= (. kg kg) = (G.8-1.5)
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+  Introduction DALHOUSIE
*  Motion @
Control Scheme for Autonomous  : .. UNIVERSITY
) T conto) nspiring Minds
Mobile Robot o GomhdnRemarks..... EIACADIA
+  LEGO Mindstorms CNTVERSITY
mission
) o commands\ coghition - decision making
X e . (e.g. Markov decision processes)
database —l localization . - machine learning
(e.g. Bayes filters, particie filter, EKF) | "position” _ | (e.q. reinforcement learning)
. global map
map building path planning - navigation
¥ - obstacle avoidance
environment model
sensor model
robot motion model path
(e.g. kinematics, dynamics, uncertainty) sensor instructions

local map

|

information
extraction &
interpretation

path execution

middleware

PERCEPTION

T

raw data
|

I
actuator commands
sensor commands

MOTION CONTROL

\
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+ Concluding Remarks
+ LEGO Mindstorms @ A g A ‘D‘ ]‘: ;A

» sensors and actuators
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